Feature Matching in Time Series Modelling

نویسندگان

  • Yingcun Xia
  • Howell Tong
چکیده

Using a time series model to mimic an observed time series has a long history. However, with regard to this objective, conventional estimation methods for discrete-time dynamical models are frequently found to be wanting. In fact, they are characteristically misguided in at least two respects: (i) assuming that there is a true model; (ii) evaluating the efficacy of the estimation as if the postulated model is true. There are numerous examples of models, when fitted by conventional methods, that fail to capture some of the most basic global features of the data, such as cycles with good matching periods, singularities of spectral density functions (especially at the origin) and others. We argue that the shortcomings need not always be due to the model formulation but the inadequacy of the conventional fitting methods. After all, all models are wrong, but some are useful if they are fitted properly. The practical issue becomes one of how to best fit the model to data. Thus, in the absence of a true model, we prefer an alternative approach to conventional model fitting that typically involves one-step-ahead prediction errors. Our primary aim is to match the joint probability distribution of the observable time series, including long-term features of the dynamics that underpin the data, such as cycles, long memory and others, rather than short-term prediction. For want of a better name, we call this specific aim feature matching. The challenges of model mis-specification, measurement errors and the scarcity

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

a Comparison Study Between the Joint Probability Approach and Time Series Rainfall Modelling in Coastal Detention Pond Analysis (RESEARCH NOTE)

In tidally affected coastal catchments detention pond should be provided to store flood surface water. A comparison between the full simulation approach based on the joint probability method and time series rainfall modeling via the annual maximum of pond level was undertaken to investigate the assumptions of independence between variables that are necessary in the joint probability method. The...

متن کامل

Feature-preserving interpolation and filtering of environmental time series

We propose a method for filling gaps and removing interferences in time series for applications involving continuous monitoring of environmental variables. The approach is non-parametric and based on an iterative pattern-matching between the affected and the valid parts of the time series. It considers several variables jointly in the pattern matching process and allows preserving linear or non...

متن کامل

Online Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features

Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...

متن کامل

TREND-CYCLE ESTIMATION USING FUZZY TRANSFORM OF HIGHER DEGREE

In this paper, we provide theoretical justification for the application of higher degree fuzzy transform in time series analysis. Under the assumption that a time series can be additively decomposed into a trend-cycle, a seasonal component and a random noise, we demonstrate that the higher degree fuzzy transform technique can be used for the estimation of the trend-cycle, which is one of the ba...

متن کامل

Pattern Modelling in Time-series Forecasting

Pattern modelling in time-series prediction refers to the process of identifying past relationships and trends in historical data for predicting future values. This paper describes the development of a new pattern matching technique for univariate time-series forecasting. The pattern modelling technique out-performs frequently used statistical methods such as Exponential Smoothing on different ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010